Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107153, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38462163

RESUMO

The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape, we conducted a gain-of-function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including Jade family PHD zinc finger 3 (JADE3) a protein involved in directing the histone acetyltransferase histone acetyltransferase binding to ORC1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Our results suggest a distinct function for JADE3 as expression of the closely related paralogs JADE1 and JADE2 does not confer resistance to influenza A virus infection. JADE3 is required for both constitutive and inducible expression of the well-characterized antiviral gene interferon-induced transmembrane protein 3 (IFITM3). Furthermore, we find JADE3 activates the NF-kB signaling pathway, which is required for the promotion of IFITM3 expression by JADE3. Therefore, we propose JADE3 activates an antiviral genetic program involving NF-kB-dependent IFITM3 expression to restrict influenza A virus infection.

2.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808733

RESUMO

The innate immune system features a web of interacting pathways that require exquisite regulation. To identify novel nodes in this immune landscape we conducted a gain of function, genome-wide CRISPR activation screen with influenza A virus. We identified both appreciated and novel antiviral genes, including JADE3 a protein involved in directing the histone acetyltransferase HBO1 complex to modify chromatin and regulate transcription. JADE3 is both necessary and sufficient to restrict influenza A virus infection. Interestingly, expression of the closely related paralogues JADE1 and JADE2 are unable to restrict influenza A virus infection, suggesting a distinct function of JADE3. We identify both shared and unique transcriptional signatures between uninfected cells expressing JADE3 and JADE2. These data provide a framework for understanding the overlapping and distinct functions of the JADE family of paralogues. Specifically, we find that JADE3 expression activates the NF-kB signaling pathway, consistent with an antiviral function. Therefore, we propose JADE3, but not JADE1 or JADE2, activates an antiviral genetic program involving the NF-kB pathway to restrict influenza A virus infection.

3.
PLoS Pathog ; 19(7): e1011351, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410700

RESUMO

Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1. Importantly, the TPR domain of KDM6A is required for recruitment of the histone methyltransferase KMT2D and histone deacetylase p300. Together this KDM6A-KMT2D-p300 complex localizes to the proximal and distal enhancers of ACE2 and regulates receptor expression. Notably, small molecule inhibition of p300 catalytic activity abrogates ACE2 and DPP4 expression and confers resistance to all major SARS-CoV-2 variants and MERS-CoV in primary human airway and intestinal epithelial cells. These data highlight the role for KDM6A-KMT2D-p300 complex activities in conferring diverse coronaviruses susceptibility and reveal a potential pan-coronavirus therapeutic target to combat current and emerging coronaviruses. One Sentence Summary: The KDM6A/KMT2D/EP300 axis promotes expression of multiple viral receptors and represents a potential drug target for diverse coronaviruses.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Histona Desmetilases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo
4.
Nature ; 616(7955): 152-158, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36991121

RESUMO

Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but there is no known mechanism that causes norovirus infection-triggered cell death and lysis1-3. Here we identify a molecular mechanism of norovirus-induced cell death. We found that the norovirus-encoded NTPase NS3 contains an N-terminal four-helix bundle domain homologous to the membrane-disruption domain of the pseudokinase mixed lineage kinase domain-like (MLKL). NS3 has a mitochondrial localization signal and thus induces cell death by targeting mitochondria. Full-length NS3 and an N-terminal fragment of the protein bound the mitochondrial membrane lipid cardiolipin, permeabilized the mitochondrial membrane and induced mitochondrial dysfunction. Both the N-terminal region and the mitochondrial localization motif of NS3 were essential for cell death, viral egress from cells and viral replication in mice. These findings suggest that noroviruses have acquired a host MLKL-like pore-forming domain to facilitate viral egress by inducing mitochondrial dysfunction.


Assuntos
Morte Celular , Norovirus , Nucleosídeo-Trifosfatase , Proteínas Quinases , Proteínas Virais , Animais , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Norovirus/enzimologia , Norovirus/crescimento & desenvolvimento , Norovirus/patogenicidade , Norovirus/fisiologia , Proteínas Quinases/química , Replicação Viral , Proteínas Virais/química , Proteínas Virais/metabolismo , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/metabolismo , Sinais Direcionadores de Proteínas , Cardiolipinas/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo
5.
Cell Rep ; 41(6): 111593, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351394

RESUMO

Murine norovirus (MNoV) is a model for human norovirus and for interrogating mechanisms of viral tropism and persistence. We previously demonstrated that the persistent strain MNoVCR6 infects tuft cells, which are dispensable for the non-persistent strain MNoVCW3. We now show that diverse MNoV strains require tuft cells for chronic enteric infection. We also demonstrate that interferon-λ (IFN-λ) acts directly on tuft cells to cure chronic MNoVCR6 infection and that type I and III IFNs signal together via STAT1 in tuft cells to restrict MNoVCW3 tropism. We then develop an enteroid model and find that MNoVCR6 and MNoVCW3 similarly infect tuft cells with equal IFN susceptibility, suggesting that IFN derived from non-epithelial cells signals on tuft cells in trans to restrict MNoVCW3 tropism. Thus, tuft cell tropism enables MNoV persistence and is determined by tuft cell-intrinsic factors (viral receptor expression) and -extrinsic factors (immunomodulatory signaling by non-epithelial cells).


Assuntos
Infecções por Caliciviridae , Norovirus , Camundongos , Humanos , Animais , Norovirus/fisiologia , Infecções por Caliciviridae/metabolismo , Camundongos Endogâmicos C57BL , Tropismo Viral , Tropismo
6.
J Virol ; 96(17): e0070722, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35972292

RESUMO

Noroviruses are a leading cause of gastroenteritis worldwide, yet the molecular mechanisms of how host antiviral factors restrict norovirus infection are poorly understood. Here, we present a CRISPR activation screen that identifies mouse genes which inhibit murine norovirus (MNV) replication. Detailed analysis of the major hit Trim7 demonstrates a potent inhibition of the early stages of MNV replication. Leveraging in vitro evolution, we identified MNV mutants that escape Trim7 restriction by altering the cleavage of the viral NS6-7 polyprotein precursor. NS6, but not the NS6-7 precursor, directly binds the substrate-binding domain of Trim7. Surprisingly, the selective polyprotein processing that enables Trim7 evasion inflicts a significant evolutionary burden, as viruses with decreased NS6-7 cleavage are strongly attenuated in viral replication and pathogenesis. Our data provide an unappreciated mechanism of viral evasion of cellular antiviral factors through selective polyprotein processing and highlight the evolutionary tradeoffs in acquiring resistance to host restriction factors. IMPORTANCE To maximize a limited genetic capacity, viruses encode polyproteins that can be subsequently separated into individual components by viral proteases. While classically viewed as a means of economy, recent findings have indicated that polyprotein processing can spatially and temporally coordinate the distinct phases of the viral life cycle. Here, we present a function for alternative polyprotein processing centered on immune defense. We discovered that selective polyprotein processing of the murine norovirus polyprotein shields MNV from restriction by the host antiviral protein Trim7. Trim7 can bind the viral protein NS6 but not the viral precursor protein NS6-7. Our findings provide insight into the evolutionary pressures that define patterns of viral polyprotein processing and uncover a trade-off between viral replication and immune evasion.


Assuntos
Infecções por Caliciviridae , Norovirus , Poliproteínas , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas não Estruturais Virais , Animais , Evasão da Resposta Imune , Camundongos , Norovirus/genética , Norovirus/fisiologia , Poliproteínas/genética , Poliproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
7.
PLoS Pathog ; 18(3): e1010322, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263388

RESUMO

Cholesterol homeostasis is required for the replication of many viruses, including Ebola virus, hepatitis C virus, and human immunodeficiency virus-1. Niemann-Pick C1 (NPC1) is an endosomal-lysosomal membrane protein involved in cholesterol trafficking from late endosomes and lysosomes to the endoplasmic reticulum. We identified NPC1 in CRISPR and RNA interference screens as a putative host factor for infection by mammalian orthoreovirus (reovirus). Following internalization via clathrin-mediated endocytosis, the reovirus outer capsid is proteolytically removed, the endosomal membrane is disrupted, and the viral core is released into the cytoplasm where viral transcription, genome replication, and assembly take place. We found that reovirus infection is significantly impaired in cells lacking NPC1, but infection is restored by treatment of cells with hydroxypropyl-ß-cyclodextrin, which binds and solubilizes cholesterol. Absence of NPC1 did not dampen infection by infectious subvirion particles, which are reovirus disassembly intermediates that bypass the endocytic pathway for infection of target cells. NPC1 is not required for reovirus attachment to the plasma membrane, internalization into cells, or uncoating within endosomes. Instead, NPC1 is required for delivery of transcriptionally active reovirus core particles from endosomes into the cytoplasm. These findings suggest that cholesterol homeostasis, ensured by NPC1 transport activity, is required for reovirus penetration into the cytoplasm, pointing to a new function for NPC1 and cholesterol homeostasis in viral infection.


Assuntos
Infecções por Reoviridae , Reoviridae , Animais , Colesterol/metabolismo , Endossomos/metabolismo , Homeostase , Humanos , Mamíferos , Proteína C1 de Niemann-Pick/metabolismo , Reoviridae/metabolismo , Infecções por Reoviridae/metabolismo
9.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177207

RESUMO

Noroviruses are a leading cause of gastrointestinal infection in humans and mice. Understanding human norovirus (HuNoV) cell tropism has important implications for our understanding of viral pathogenesis. Murine norovirus (MNoV) is extensively used as a surrogate model for HuNoV. We previously identified CD300lf as the receptor for MNoV. Here, we generated a Cd300lf conditional knockout (CD300lfF/F ) mouse to elucidate the cell tropism of persistent and nonpersistent strains of murine norovirus. Using this mouse model, we demonstrated that CD300lf expression on intestinal epithelial cells (IECs), and on tuft cells in particular, is essential for transmission of the persistent MNoV strain CR6 (MNoVCR6) in vivo In contrast, the nonpersistent MNoV strain CW3 (MNoVCW3) does not require CD300lf expression on IECs for infection. However, deletion of CD300lf in myelomonocytic cells (LysM Cre+) partially reduces CW3 viral load in lymphoid and intestinal tissues. Disruption of CD300lf expression on B cells (CD19 Cre), neutrophils (Mrp8 Cre), and dendritic cells (CD11c Cre) did not affect MNoVCW3 viral RNA levels. Finally, we show that the transcription factor STAT1, which is critical for the innate immune response, partially restricts the cell tropism of MNoVCW3 to LysM+ cells. Taken together, these data demonstrate that CD300lf expression on tuft cells is essential for MNoVCR6; that myelomonocytic cells are a major, but not exclusive, target cell of MNoVCW3; and that STAT1 signaling restricts the cellular tropism of MNoVCW3 This study provides the first genetic system for studying the cell type-specific role of CD300lf in norovirus pathogenesis.IMPORTANCE Human noroviruses (HuNoVs) are a leading cause of gastroenteritis resulting in up to 200,000 deaths each year. The receptor and cell tropism of HuNoV in immunocompetent humans are unclear. We use murine norovirus (MNoV) as a model for HuNoV. We recently identified CD300lf as the sole physiologic receptor for MNoV. Here, we leverage this finding to generate a Cd300lf conditional knockout mouse to decipher the contributions of specific cell types to MNoV infection. We demonstrate that persistent MNoVCR6 requires CD300lf expression on tuft cells. In contrast, multiple CD300lf+ cell types, dominated by myelomonocytic cells, are sufficient for nonpersistent MNoVCW3 infection. CD300lf expression on epithelial cells, B cells, neutrophils, and dendritic cells is not critical for MNoVCW3 infection. Mortality associated with the MNoVCW3 strain in Stat1-/- mice does not require CD300lf expression on LysM+ cells, highlighting that both CD300lf receptor expression and innate immunity regulate MNoV cell tropism in vivo.


Assuntos
Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata/imunologia , Intestinos/imunologia , Norovirus/fisiologia , Receptores Imunológicos/fisiologia , Tropismo Viral , Animais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Células Epiteliais/virologia , Feminino , Intestinos/virologia , Masculino , Camundongos , Camundongos Knockout
10.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372156

RESUMO

Macrophages activated with interferon-γ (IFN-γ) in combination with other proinflammatory stimuli, such as lipopolysaccharide or tumor necrosis factor-α (TNF-α), respond with transcriptional and cellular changes that enhance clearance of intracellular pathogens at the risk of damaging tissues. IFN-γ effects must therefore be carefully balanced with inhibitory mechanisms to prevent immunopathology. We performed a genome-wide CRISPR knockout screen in a macrophage cell line to identify negative regulators of IFN-γ responses. We discovered an unexpected role of the ubiquitin-fold modifier (Ufm1) conjugation system (herein UFMylation) in inhibiting responses to IFN-γ and lipopolysaccharide. Enhanced IFN-γ activation in UFMylation-deficient cells resulted in increased transcriptional responses to IFN-γ in a manner dependent on endoplasmic reticulum stress responses involving Ern1 and Xbp1. Furthermore, UFMylation in myeloid cells is required for resistance to influenza infection in mice, indicating that this pathway modulates in vivo responses to infection. These findings provide a genetic roadmap for the regulation of responses to a key mediator of cellular immunity and identify a molecular link between the UFMylation pathway and immune responses.


Assuntos
Interferon gama/metabolismo , Ativação de Macrófagos/imunologia , Proteínas/metabolismo , Animais , Autofagia/imunologia , Linhagem Celular , Autofagia Mediada por Chaperonas , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/imunologia , Feminino , Interferon gama/imunologia , Lipopolissacarídeos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Transporte Proteico , Proteínas/fisiologia
11.
Cell ; 184(1): 76-91.e13, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33147444

RESUMO

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.


Assuntos
Infecções por Coronavirus/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Coronavirus/classificação , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Células HEK293 , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Células Vero , Internalização do Vírus
12.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087464

RESUMO

Engagement of cell surface receptors by viruses is a critical determinant of viral tropism and disease. The reovirus attachment protein σ1 binds sialylated glycans and proteinaceous receptors to mediate infection, but the specific requirements for different cell types are not entirely known. To identify host factors required for reovirus-induced cell death, we conducted a CRISPR-knockout screen targeting over 20,000 genes in murine microglial BV2 cells. Candidate genes required for reovirus to cause cell death were highly enriched for sialic acid synthesis and transport. Two of the top candidates identified, CMP N-acetylneuraminic acid synthetase (Cmas) and solute carrier family 35 member A1 (Slc35a1), promote sialic acid expression on the cell surface. Two reovirus strains that differ in the capacity to bind sialic acid, T3SA+ and T3SA-, were used to evaluate Cmas and Slc35a1 as potential host genes required for reovirus infection. Following CRISPR-Cas9 disruption of either gene, cell surface expression of sialic acid was diminished. These results correlated with decreased binding of strain T3SA+, which is capable of engaging sialic acid. Disruption of either gene did not alter the low-level binding of T3SA-, which does not engage sialic acid. Furthermore, infectivity of T3SA+ was diminished to levels similar to those of T3SA- in cells lacking Cmas and Slc35a1 by CRISPR ablation. However, exogenous expression of Cmas and Slc35a1 into the respective null cells restored sialic acid expression and T3SA+ binding and infectivity. These results demonstrate that Cmas and Slc35a1, which mediate cell surface expression of sialic acid, are required in murine microglial cells for efficient reovirus binding and infection.IMPORTANCE Attachment factors and receptors are important determinants of dissemination and tropism during reovirus-induced disease. In a CRISPR cell survival screen, we discovered two genes, Cmas and Slc35a1, which encode proteins required for sialic acid expression on the cell surface and mediate reovirus infection of microglial cells. This work elucidates host genes that render microglial cells susceptible to reovirus infection and expands current understanding of the receptors on microglial cells that are engaged by reovirus. Such knowledge may lead to new strategies to selectively target microglial cells for oncolytic applications.


Assuntos
N-Acilneuraminato Citidililtransferase/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Infecções por Reoviridae/virologia , Reoviridae/fisiologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Camundongos , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/genética , Proteínas de Transporte de Nucleotídeos/genética , Receptores Virais/metabolismo , Reoviridae/genética , Reoviridae/metabolismo , Infecções por Reoviridae/metabolismo , Ligação Viral , Replicação Viral
13.
bioRxiv ; 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32869025

RESUMO

Identification of host genes essential for SARS-CoV-2 infection may reveal novel therapeutic targets and inform our understanding of COVID-19 pathogenesis. Here we performed a genome-wide CRISPR screen with SARS-CoV-2 and identified known SARS-CoV-2 host factors including the receptor ACE2 and protease Cathepsin L. We additionally discovered novel pro-viral genes and pathways including the SWI/SNF chromatin remodeling complex and key components of the TGF-ß signaling pathway. Small molecule inhibitors of these pathways prevented SARS-CoV-2-induced cell death. We also revealed that the alarmin HMGB1 is critical for SARS-CoV-2 replication. In contrast, loss of the histone H3.3 chaperone complex sensitized cells to virus-induced death. Together this study reveals potential therapeutic targets for SARS-CoV-2 and highlights host genes that may regulate COVID-19 pathogenesis.

14.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581099

RESUMO

Human norovirus is the leading cause of gastroenteritis worldwide, yet basic questions about its life cycle remain unanswered due to an historical lack of robust experimental systems. Recent studies on the closely related murine norovirus (MNV) have identified CD300LF as an indispensable entry factor for MNV. We compared the MNV susceptibilities of cells from different mouse strains and identified polymorphisms in murine CD300LF which are critical for its function as an MNV receptor. Bone marrow-derived macrophages (BMDMs) from I/LnJ mice were resistant to infection from multiple MNV strains which readily infect BMDMs from C57BL/6J mice. The resistance of I/LnJ BMDMs was specific to MNV, since the cells supported infection of other viruses comparably to C57BL/6J BMDMs. Transduction of I/LnJ BMDMs with C57BL/6J CD300LF made the cells permissible to MNV infection, suggesting that the cause of resistance lies in the entry step of MNV infection. In fact, we mapped this phenotype to a 4-amino-acid difference at the CC' loop of CD300LF; swapping of these amino acids between C57BL/6J and I/LnJ CD300LF proteins made the mutant C57BL/6J CD300LF functionally impaired and the corresponding mutant of I/LnJ CD300LF functional as an MNV entry factor. Surprisingly, expression of the I/LnJ CD300LF in other cell types made the cells infectible by MNV, even though the I/LnJ allele did not function as an MNV receptor in macrophage-like cells. Correspondingly, I/LnJ CD300LF bound MNV virions in permissive cells but not in nonpermissive cells. Collectively, our data suggest the existence of a cell type-specific modifier of MNV entry.IMPORTANCE MNV is a prevalent model system for studying human norovirus, which is the leading cause of gastroenteritis worldwide and thus a sizeable public health burden. Elucidating mechanisms underlying susceptibility of host cells to MNV infection can lead to insights on the roles that specific cell types play during norovirus pathogenesis. Here, we show that different alleles of the proteinaceous receptor for MNV, CD300LF, function in a cell type-dependent manner. In contrast to the C57BL/6J allele, which functions as an MNV entry factor in all tested cell types, including human cells, I/LnJ CD300LF does not function as an MNV entry factor in macrophage-like cells but does allow MNV entry in other cell types. Together, these observations indicate the existence of cell type-specific modifiers of CD300LF-dependent MNV entry.


Assuntos
Infecções por Caliciviridae/virologia , Resistência à Doença/genética , Polimorfismo Genético , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Animais , Sítios de Ligação , Gastroenterite/virologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Modelos Moleculares , Norovirus , Conformação Proteica , Receptores Imunológicos/química , Análise de Sequência de Proteína , Internalização do Vírus
15.
PLoS Pathog ; 16(4): e1008242, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251490

RESUMO

Murine norovirus (MNoV) is an important model of human norovirus (HNoV) and mucosal virus infection more broadly. Viral receptor utilization is a major determinant of cell tropism, host range, and pathogenesis. The bona fide receptor for HNoV is unknown. Recently, we identified CD300lf as a proteinaceous receptor for MNoV. Interestingly, its paralogue CD300ld was also sufficient for MNoV infection in vitro. Here we explored whether CD300lf is the sole physiologic receptor in vivo and whether HNoV can use a CD300 ortholog as an entry receptor. We report that both CD300ld and CD300lf are sufficient for infection by diverse MNoV strains in vitro. We further demonstrate that CD300lf is essential for both oral and parenteral MNoV infection and to elicit anti-MNoV humoral responses in vivo. In mice deficient in STAT1 signaling, CD300lf is required for MNoV-induced lethality. Finally, we demonstrate that human CD300lf (huCD300lf) is not essential for HNoV infection, nor does huCD300lf inhibit binding of HNoV virus-like particles to glycans. Thus, we report huCD300lf is not a receptor for HNoV.


Assuntos
Infecções por Caliciviridae/virologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Norovirus/metabolismo , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Norovirus/crescimento & desenvolvimento , Receptores Imunológicos/fisiologia , Tropismo Viral
16.
Nat Microbiol ; 5(2): 272-281, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959973

RESUMO

Innate and adaptive immune responses that prime myeloid cells, such as macrophages, protect against pathogens1,2. However, if left uncontrolled, these responses may lead to detrimental inflammation3. Macrophages, particularly those resident in tissues, must therefore remain quiescent between infections despite chronic stimulation by commensal microorganisms. The genes required for quiescence of tissue-resident macrophages are not well understood. Autophagy, an evolutionarily conserved cellular process by which cytoplasmic contents are targeted for lysosomal digestion, has homeostatic functions including maintenance of protein and organelle integrity and regulation of metabolism4. Recent research has shown that degradative autophagy, as well as various combinations of autophagy genes, regulate immunity and inflammation5-12. Here, we delineate a function of the autophagy proteins Beclin 1 and FIP200-but not of other essential autophagy components ATG5, ATG16L1 or ATG7-in mediating quiescence of tissue-resident macrophages by limiting the effects of systemic interferon-γ. The perturbation of quiescence in mice that lack Beclin 1 or FIP200 in myeloid cells results in spontaneous immune activation and resistance to Listeria monocytogenes infection. While antibiotic-treated wild-type mice display diminished macrophage responses to inflammatory stimuli, this is not observed in mice that lack Beclin 1 in myeloid cells, establishing the dominance of this gene over effects of the bacterial microbiota. Thus, select autophagy genes, but not all genes essential for degradative autophagy, have a key function in maintaining immune quiescence of tissue-resident macrophages, resulting in genetically programmed susceptibility to bacterial infection.


Assuntos
Autofagia/genética , Listeria monocytogenes/patogenicidade , Macrófagos Peritoneais/imunologia , Animais , Autofagia/imunologia , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/imunologia , Proteína Beclina-1/deficiência , Proteína Beclina-1/genética , Proteína Beclina-1/imunologia , Proliferação de Células , Suscetibilidade a Doenças/imunologia , Feminino , Predisposição Genética para Doença , Interferon gama/imunologia , Listeria monocytogenes/imunologia , Listeriose/etiologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Proc Natl Acad Sci U S A ; 116(33): 16497-16506, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346084

RESUMO

Host inflammatory responses must be tightly regulated to ensure effective immunity while limiting tissue injury. IFN gamma (IFNγ) primes macrophages to mount robust inflammatory responses. However, IFNγ also induces cell death, and the pathways that regulate IFNγ-induced cell death are incompletely understood. Using genome-wide CRISPR/Cas9 screening, we identified autophagy genes as central mediators of myeloid cell survival during the IFNγ response. Hypersensitivity of autophagy gene-deficient cells to IFNγ was mediated by tumor necrosis factor (TNF) signaling via receptor interacting protein kinase 1 (RIPK1)- and caspase 8-mediated cell death. Mice with myeloid cell-specific autophagy gene deficiency exhibited marked hypersensitivity to fatal systemic TNF administration. This increased mortality in myeloid autophagy gene-deficient mice required the IFNγ receptor, and mortality was completely reversed by pharmacologic inhibition of RIPK1 kinase activity. These findings provide insight into the mechanism of IFNγ-induced cell death via TNF, demonstrate a critical function of autophagy genes in promoting cell viability in the presence of inflammatory cytokines, and implicate this cell survival function in protection against mortality during the systemic inflammatory response.


Assuntos
Autofagia/genética , Interferon gama/toxicidade , Células Mieloides/patologia , Fator de Necrose Tumoral alfa/toxicidade , Animais , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Citoproteção/efeitos dos fármacos , Genoma , Camundongos Knockout , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/ultraestrutura , NF-kappa B/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
18.
Cell Host Microbe ; 25(6): 845-857.e5, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31130511

RESUMO

Murine norovirus (MNoV) infects a low percentage of enteric tuft cells and can persist in these cells for months following acute infection. Both tuft-cell tropism and resistance to interferon-λ (IFN-λ)-mediated clearance during persistent infection requires the viral nonstructural protein 1/2 (NS1/2). We show that processing of NS1/2 yields NS1, an unconventionally secreted viral protein that is central for IFN-λ resistance. MNoV infection globally suppresses intestinal IFN-λ responses, which is attributable to secreted NS1. MNoV NS1 secretion is triggered by caspase-3 cleavage of NS1/2, and a secreted form of human NoV NS1 is also observed. NS1 secretion is essential for intestinal infection and resistance to IFN-λ in vivo. NS1 vaccination alone protects against MNoV challenge, despite the lack of induction of neutralizing anti-capsid antibodies previously shown to confer protection. Thus, despite infecting a low number of tuft cells, NS1 secretion allows MNoV to globally suppress IFN responses and promote persistence.


Assuntos
Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/virologia , Citocinas/antagonistas & inibidores , Evasão da Resposta Imune , Norovirus/crescimento & desenvolvimento , Norovirus/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Animais , Modelos Animais de Doenças , Gastroenterite/patologia , Gastroenterite/virologia , Humanos , Camundongos , Fatores de Virulência/metabolismo
19.
J Virol ; 93(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30305350

RESUMO

Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide, yet host factors that restrict NoV replication are not well understood. Here, we use a CRISPR activation genome-wide screening to identify host genes that can inhibit murine norovirus (MNoV) replication in human cells. Our screens identified with high confidence 49 genes that can inhibit MNoV infection when overexpressed. A significant number of these genes are in interferon and immune regulation signaling networks, but surprisingly, the majority of the genes identified are neither associated with innate or adaptive immunity nor associated with any antiviral activity. Confirmatory studies of eight of the genes validate the initial screening data. Mechanistic studies on TRIM7 demonstrated a conserved role of the molecule in mouse and human cells in restricting MNoV in a step of infection after viral entry. Furthermore, we demonstrate that two isoforms of TRIM7 have differential antiviral activity. Taken together, these data provide a resource for understanding norovirus biology and demonstrate a robust methodology for identifying new antiviral molecules.IMPORTANCE Norovirus is one of the leading causes of food-borne illness worldwide. Despite its prevalence, our understanding of norovirus biology is limited due to the difficulty in growing human norovirus in vitro and a lack of an animal model. Murine norovirus (MNoV) is a model norovirus system because MNoV replicates robustly in cell culture and in mice. To identify host genes that can restrict norovirus replication when overexpressed, we performed genome-wide CRISPR activation screens to induce gene overexpression at the native locus through recruitment of transcriptional activators to individual gene promoters. We found 49 genes that could block murine norovirus replication in human cells. Several of these genes are associated with classical immune signaling pathways, while many of the molecules we identified have not been previously associated with antiviral activity. Our data are a resource for those studying noroviruses, and we provide a robust approach to identify novel antiviral genes.


Assuntos
Antivirais/farmacologia , Infecções por Caliciviridae/genética , Proteínas de Transporte/farmacologia , Redes Reguladoras de Genes , Norovirus/fisiologia , Animais , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células HeLa , Humanos , Camundongos , Modelos Biológicos , Norovirus/efeitos dos fármacos , Ativação Transcricional , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Regulação para Cima , Internalização do Vírus , Replicação Viral/efeitos dos fármacos
20.
Proc Natl Acad Sci U S A ; 115(39): E9201-E9210, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30194229

RESUMO

Murine norovirus (MNoV) is closely related to human norovirus (HNoV), an infectious agent responsible for acute gastroenteritis worldwide. Here we report the X-ray crystal structure of the dimeric MNoV VP1 protruding (P) domain in complex with its cellular receptor CD300lf. CD300lf binds the P domain with a 2:2 stoichiometry, engaging a cleft between the AB and DE loops of the P2 subdomain at a site that overlaps the epitopes of neutralizing antibodies. We also identify that bile acids are cofactors enhancing MNoV cell-binding and infectivity. Structures of CD300lf-P domain in complex with glycochenodeoxycholic acid (GCDCA) and lithocholic acid (LCA) reveal two bile acid binding sites at the P domain dimer interface distant from receptor binding sites. The structural determinants for receptor and bile acid binding are supported by numerous biophysical assays utilizing interface residue mutations. We find that the monomeric affinity of CD300lf for the P domain is low and is divalent cation dependent. We have also determined the crystal structure of CD300lf in complex with phosphocholine, revealing that MNoV engages its receptor in a manner mimicking host ligands including similar metal coordination. Docking of the cocomplex structures onto a cryo-EM-derived model of MNoV suggests that each virion can make multiple CD300lf engagements, and thus, infection may be driven by the avidity of cell surface clustered CD300lf. These studies identify multiple potential modulators of norovirus infection that may act to regulate the interaction between the viral capsid P domain and its cognate cellular receptor.


Assuntos
Ácidos e Sais Biliares/química , Simulação de Acoplamento Molecular , Norovirus/química , Receptores Imunológicos/química , Vírion/química , Animais , Ácidos e Sais Biliares/metabolismo , Infecções por Caliciviridae , Linhagem Celular , Microscopia Crioeletrônica , Camundongos , Mutação , Norovirus/genética , Norovirus/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Vírion/genética , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...